
200403_Capstone

Jason Schmidberger

03/04/2020

Movielens Project
Introduction
This document outlines the Movielens project that I am completing as part of my Data Science: Capstone
module run by HarvardX through EdX. The module is being completed as the final part of the HarvardX
Data Science Professional Certificate.

MovieLens is essentially a recommender system created by GroupLens Research in 1997. The full dataset
contains over 26 million ratings of 45000 movies by 270000 users. A large community of online users utilise this
package to develop and research recommender systems. It is the goal of this work to create a recommender
system on a subset of the MovieLens dataset to show case the skills and techniques I have developed while
undertaking the HarvardX Data Science course.

Initially, to construct the subset of the MovieLens dataset that will feature in this project, I followed clear
instructions given in “Create Train and Validation Sets”. Two dataframes are created that are to be carried
forward into the data analysis and modelling part of the project. Dataframes “edx” which is the training
dataset, and “validation” which is the smaller testing dataset.

The latter part of the report involves the development of a series of models/algorithms to be used to predict
ratings based on predictors present in the final validation dataset. Monitoring of model quality is performed
by performing an RMSE calculation using a cross validation portion of the edx training set. Only the final
model will be assessed using an RMSE calculation comparing the model predictions to the validation testing
dataset.

Methods/Analysis
In this section I avoid presenting prediction results as they will be presented in full in the next “Results”
section. Here I focus on more general data analysis and presenting the code as my algorithm is developed.

Creation of training dataset “edx”, and testing dataset “validation” was performed using code provided by
HarvardX staff as part of instructions for this project. When run the code ionitially a 10 M subset of the full
movielens dataset is used. This is split into 90% and 10% subsivisions for training and testing respectively.
The code is not shown in the report but is imbedded in the Rmd file.

Preparation of cross validation subdivision of edx training dataset

As we can only use the validation testing dataset to assess the final model, I am setting up an aditional
subdivision of the training dataset into edx_work (90%) that will be used for training the models, and edx_cv
(10%) that will be used for cross validation (RMSE calculations).
test_index2 <- createDataPartition(y = edx$rating, times = 1, p = 0.1, list = FALSE)
edx_work <- edx[-test_index2,]
temp <- edx[test_index2,]

1

edx_cv <- temp %>%
semi_join(edx_work, by = "movieId") %>%
semi_join(edx_work, by = "userId")

To ensure all movies and users present in edx_cv are also present in edx_work.
removed <- anti_join(temp, edx_cv)

Joining, by = c("userId", "movieId", "rating", "timestamp", "title", "genres")
edx_work <- rbind(edx_work, removed)
rm(test_index2, temp)

Development of Prediction algorithm

In this section I will begin with some basic analysis of the “edx” and “validation” datasets to get a better feel
for them. Following that I will proceed through the development of a succession of prediction algorithms,
each getting (ideally) better in terms of minimising an RMSE value.

Beginning with some basic analysis and data visualisation.

Top 10 movies with the highest number of ratings.

title count
Pulp Fiction (1994) 31362
Forrest Gump (1994) 31079
Silence of the Lambs, The (1991) 30382
Jurassic Park (1993) 29360
Shawshank Redemption, The (1994) 28015
Braveheart (1995) 26212
Fugitive, The (1993) 25998
Terminator 2: Judgment Day (1991) 25984
Star Wars: Episode IV - A New Hope (a.k.a. Star Wars) (1977) 25672
Apollo 13 (1995) 24284

To get a feeling for structure within the rating system it would be useful to rank the ratings values themselves
(Most commonly used down to least).

rating count
4.0 2588430
3.0 2121240
5.0 1390114
3.5 791624
2.0 711422
4.5 526736
1.0 345679
2.5 333010
1.5 106426
0.5 85374

Plotting this.

2

0e+00

1e+06

2e+06

1 2 3 4 5
rating

co
un

t
Line plot of total ratings counts

From this data, it is clear that 4 is the most common rating, and that half measures are far less common than
non-decimal integers. An attampt was made to take advantage of this by rounding down the x.5 predicted
ratings by their proportion in the dataset but it did not yield significant improvements to the RMSE value of
that model.

Defining the RMSE algorithm used assess usefulness of prediction algorithms.

RMSE = sqrt(mean((true_ratings - predicted_ratings)ˆ2))

Prediction algorithm #1: Just the average.

In what is the most basic model, as I guess ratings based on movie and user data, I assume they are all equal
to the over all mean of all ratings in edx (mu_hat). See value below.

mean(edx_work$rating)
mu_hat 3.512509

Warning: `data_frame()` is deprecated as of tibble 1.1.0.
Please use `tibble()` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_warnings()` to see where this warning was generated.

Prediction algorithm #2: Movie effect model

There are certainly situations when some movies have a tendency to perform particularly well or particularly
poorly in ratings. Here is an attempt to adjust the average rating value by a specific movie specific adjustment
(b_i). This b_i value for any given movie is equal to the mean of all the residuals obtained by subtracting
each rating from the overall average rating (mu).
mu <- mean(edx_work$rating)
movie_avgs <- edx_work %>%

group_by(movieId) %>%
summarise(b_i = mean(rating - mu))

head(movie_avgs, 10) %>% knitr::kable()

3

movieId b_i
1 0.4153068
2 -0.3033248
3 -0.3590946
4 -0.6313877
5 -0.4434507
6 0.3028756
7 -0.1540214
8 -0.3677188
9 -0.5260159

10 -0.0882810

Above you can see the b_i values for movieId’s 1 through 10.

0

1000

2000

3000

−3 −2 −1 0 1 2
b_i

Frequency distribution of movie residuals

Calculating the new predictions given the b_i values for each row in edx_cv dataset and adding it to
mu.
predicted_ratings_2 <- mu + edx_cv %>%

left_join(movie_avgs, by='movieId') %>%
.$b_i

model_2_rmse <- RMSE(predicted_ratings_2, edx_cv$rating)
rmse_results <- bind_rows(rmse_results,

data_frame(method = "Movie Effect Model",
RMSE = model_2_rmse))

To get the new predictions the b_i value for each movie is added to the average rating (mu).

4

Prediction algorithm #3: Movie and user effect model

Obviously users can also vary in how they rate movies. Some may be very generous, while others can be quite
difficult to impress. Consequently applying a b_u modifier to the model will likely provide an advantage.
This b_u value is the mean of mu - the actual ratings for each user of interest.

So applying both the b_i value calculated above, and this new b_u value (collectly called “User Effect
Model”) reduced the RMSE value much more to 0.8850 (see table below).
Now I am looking at the influence of the user in context of the movie effect (i.e. cumulative effect).
user_avgs <- edx_work %>%

left_join(movie_avgs, by='movieId') %>%
group_by(userId) %>%
summarise(b_u = mean(rating - mu))

predicted_ratings_3 <- edx_cv %>%
left_join(movie_avgs, by = "movieId") %>%
left_join(user_avgs, by = "userId") %>%
mutate(pred = mu + b_i + b_u) %>%
.$pred

model_3_rmse <- RMSE(predicted_ratings_3, edx_cv$rating)
rmse_results <- bind_rows(rmse_results,

data_frame(method = "User and Movie Effect Model",
RMSE = model_3_rmse))

Regularisation

In a number of cases there is a tendency for large b_i or b_u values that are misrepresentative of the movies
or users they represent. This happens when n is small, as in these cases extreme ratings (i.e. unusually low
or high ratings) will have a bigger impact on the average for that user or movie. In order to correct for
situations such as these, all b_i and b_u values can have a regularisation applied to them to effectively scale
down excessive values when n is small.

Having a look at the top 10 movies with largest b_i residuals. These movies differ the most from the average
movie rating of 3.512, in the sense that they rate better.

title b_i
Hellhounds on My Trail (1999) 1.487491
Satan’s Tango (Sátántangó) (1994) 1.487491
Shadows of Forgotten Ancestors (1964) 1.487491
Fighting Elegy (Kenka erejii) (1966) 1.487491
Sun Alley (Sonnenallee) (1999) 1.487491
Bullfighter and the Lady (1951) 1.487491
Blue Light, The (Das Blaue Licht) (1932) 1.487491
Who’s Singin’ Over There? (a.k.a. Who Sings Over There) (Ko to tamo peva) (1980) 1.237491
I’m Starting From Three (Ricomincio da Tre) (1981) 1.237491
Human Condition II, The (Ningen no joken II) (1959) 1.237491

Now looking at the 10 movies with lowest residuals. That is, movies that are much lower than the average
rating.

title b_i
Besotted (2001) -3.012509
Hi-Line, The (1999) -3.012509

5

title b_i
Accused (Anklaget) (2005) -3.012509
Confessions of a Superhero (2007) -3.012509
War of the Worlds 2: The Next Wave (2008) -3.012509
SuperBabies: Baby Geniuses 2 (2004) -2.679176
Disaster Movie (2008) -2.641541
Hip Hop Witch, Da (2000) -2.637509
From Justin to Kelly (2003) -2.616905
Criminals (1996) -2.512509

You can see from the two tables above that both top 10 and bottom 10 include quite obscure movies.

If we take another look at the top 10 list, but include the number of ratings for each.

Joining, by = "movieId"

title b_i n
Hellhounds on My Trail (1999) 1.487491 1
Satan’s Tango (Sátántangó) (1994) 1.487491 1
Shadows of Forgotten Ancestors (1964) 1.487491 1
Fighting Elegy (Kenka erejii) (1966) 1.487491 1
Sun Alley (Sonnenallee) (1999) 1.487491 1
Bullfighter and the Lady (1951) 1.487491 1
Blue Light, The (Das Blaue Licht) (1932) 1.487491 1
Who’s Singin’ Over There? (a.k.a. Who Sings Over There) (Ko to tamo peva) (1980) 1.237491 4
I’m Starting From Three (Ricomincio da Tre) (1981) 1.237491 2
Human Condition II, The (Ningen no joken II) (1959) 1.237491 4

Application of the regularising term “lambda”.

To begin with, lambda will be set at a value of 3.

movieId b_i n_i
1 0.4152488 21459
2 -0.3032305 9647
3 -0.3589243 6326
4 -0.6300462 1409
5 -0.4432197 5756
6 0.3027939 11115
7 -0.1539507 6533
8 -0.3662320 739
9 -0.5252420 2036
10 -0.0882617 13699

The new regularised b_i values and their corresponding n_i values are displayed.

Below is a figure that illustrates the difference in b_i values from the original movie_avgs vs the modified
movie_reg_avgs. The smaller the value of n associated with with a b_i, the smaller the circle.

6

−2

−1

0

1

−3 −2 −1 0 1
original

re
gu

la
riz

ed

sqrt(n)

40

80

120

160

Most of the data points are in a roughly linear slope. Values with smaller circles (small n) have a tendency to
have values closer to zero in the regularised data. This is due to the lambda in the equation having more
significance when n is a low value.

If we now take a look look at top 10 residuals for movies using these regularised movie estimates, now we are
seeing more sensible movies start to appear, with understandably lower b_i values.

Joining, by = "movieId"

title b_i n
Shawshank Redemption, The (1994) 0.9430405 25204
Godfather, The (1972) 0.9053536 16055
Usual Suspects, The (1995) 0.8521278 19570
Schindler’s List (1993) 0.8520946 20854
More (1998) 0.8412437 7
Casablanca (1942) 0.8075522 10078
Rear Window (1954) 0.8041232 7130
Seven Samurai (Shichinin no samurai) (1954) 0.8019221 4677
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 0.8013964 2603
Double Indemnity (1944) 0.7992293 1917

Prediction algorithm #4: Regularised movie effect

Applying the regularised b_i values to the prediction.
Perform prediction on regularised movie b_i.
predicted_ratings_4 <- edx_cv %>%

left_join(movie_reg_avgs, by = 'movieId') %>%

7

mutate(pred = mu + b_i) %>%
.$pred

model_4_rmse <- RMSE(predicted_ratings_4, edx_cv$rating)
rmse_results <- bind_rows(rmse_results,

data_frame(method = "Regularised movie effect",
RMSE = model_4_rmse))

The RMSE for “Regularised movie effect” is only slightly better than the unregularised movie effect (see
results section).

Now to I need to apply the same calculation to regularise the user effects. Below is plot of original b_u
versus regularised b_u. This plot varies less than the plot equivalent plot for b_i seen above.

−2

−1

0

1

−3 −2 −1 0 1
original

re
gu

la
riz

ed

sqrt(n)

20

40

60

Prediction algorithm #5: Regularised user effect

Applying this regularised b_u to the model.
predicted_ratings_5 <- edx_cv %>%

left_join(user_reg_avgs, by = "userId") %>%
mutate(pred = mu + b_u) %>%
.$pred

model_5_rmse <- RMSE(predicted_ratings_5, edx_cv$rating)
rmse_results <- bind_rows(rmse_results,

data_frame(method = "Regularised user effect",
RMSE = model_5_rmse))

8

Interestingly this regularised b_u is worse than the origial b_u values in the prediction model.

Prediction algorithm #6: Reg movie and user effect

Applying both regularised values at the same time.
Apply regularised user b to whole prediction calculation.
predicted_ratings_6 <- edx_cv %>%

left_join(movie_reg_avgs, by = 'movieId') %>%
left_join(user_reg_avgs, by = "userId") %>%
mutate(pred = mu + b_i + b_u) %>%
.$pred

model_6_rmse <- RMSE(predicted_ratings_6, edx_cv$rating)
rmse_results <- bind_rows(rmse_results,

data_frame(method = "Reg movie and user effect",
RMSE = model_6_rmse))

Together these provide an over all improvement compared to their unregularised equivalents (see results
section).

Parameterisation of Lambda

Lambda is a parameterisable variable. It is likely that I could optimise is to return lower RMSE values.

I will set lambda to be values between 0 and 10, with increments of 0.25.
lambda <- seq(0, 10, 0.25)

I will tune lambda against the edx_cv subset of the edx training dataset. I cannot use the testing (validation)
dataset until I make the final RMSE calculation.

Now to run the tuning procedure.
Running the refinement of best lambda value.
set.seed(1, sample.kind = "Rounding")

Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
used
rmses <- sapply(lambda, function(l){

mu <- mean(edx_work$rating)
b_i <- edx_work %>%

group_by(movieId) %>%
summarise(b_i = sum(rating - mu)/(n()+l))

b_u <- edx_work %>%
left_join(b_i, by = "movieId") %>%
group_by(userId) %>%
summarise(b_u = sum(rating - b_i - mu)/(n()+l))

predicted_ratings<- edx_cv %>%
left_join(b_i, by = "movieId") %>%
left_join(b_u, by = "userId") %>%
mutate(pred = mu + b_i + b_u) %>%
.$pred

return(RMSE(predicted_ratings, edx_cv$rating))
})
plot(lambda, rmses, main = "Tuning Lambda")

9

0 2 4 6 8 10

0.
86

55
0.

86
57

0.
86

59

Tuning Lambda

lambda

rm
se

s

[1] "The optimal Lambda"

[1] 4.5

The lambda value that returns the lowest RMSE is 4.5

Prediction algorithm #7: Reg mov & usr with 4.5 l

Feeding this value formally into the prediction algorithm.
b_i <- edx_work %>%

group_by(movieId) %>%
summarise(b_i = sum(rating - mu)/(n()+4.5))

b_u <- edx_work %>%
left_join(b_i, by = "movieId") %>%
group_by(userId) %>%
summarise(b_u = sum(rating - b_i - mu)/(n()+4.5))

predicted_ratings_7 <- edx_cv %>%
left_join(b_i, by = "movieId") %>%
left_join(b_u, by = "userId") %>%
mutate(pred = mu + b_i + b_u) %>%
.$pred

model_7_rmse <- RMSE(predicted_ratings_7, edx_cv$rating)
rmse_results <- bind_rows(rmse_results,

data_frame(method = "Reg mov & usr with 4.5 l",
RMSE = model_7_rmse))

rm(edx, predicted_ratings_2, predicted_ratings_3, predicted_ratings_4, predicted_ratings_5, predicted_ratings_6, predicted_ratings_7)

Principle component analysis

In an effort to improve on the regularisation of movie (b_i) and user (b_u) residuals I decided to implement
a principle component analysis to detect any relationships that exist in the data between types of movies and

10

the users rating them.

Through trial and error I have determined that in order to perform a PCA, I would have to take a further
subset of the “edx” training dataset. Performing a calculation on the full “edx” is computationally too
expensive to be practical using this technique. As such I have limited the dataset to include instances of
movies with >1000 ratings, and users that gave >500 ratings (“edx_small”).
Focusing in on the most rated movies (>1000 ratings), and most prolific users (>500 ratings).
edx_small <- edx_work %>%

group_by(movieId) %>%
filter(n() >= 1000) %>% ungroup() %>%
group_by(userId) %>%
filter(n() >= 500) %>% ungroup()

Next I would need to convert this dataset into a matrix with columns representing movieId numbers, and
rows representing userId numbers. Where they intersect are the ratings associated with each user/movie
combination.
y <- edx_small %>%

select(userId, movieId, rating) %>%
spread(movieId, rating) %>%
as.matrix()

y[1:10, 1:5]

userId 1 2 3 4
[1,] 143 2.0 NA 3 NA
[2,] 182 4.0 3.0 3 4
[3,] 215 NA 4.0 NA NA
[4,] 276 3.5 1.5 NA NA
[5,] 289 4.0 NA NA NA
[6,] 426 3.5 1.5 NA NA
[7,] 533 5.0 4.0 NA NA
[8,] 543 4.0 4.0 NA NA
[9,] 585 NA NA NA 2
[10,] 657 3.5 NA 2 NA
rm(edx_small, edx_work)

Taking now the first column and using the userId values as rownames for the matrix and then removing them
from the matrix to ensure only ratings values are included in the cells.

1 2 3 4 5
143 2.0 NA 3 NA 4
182 4.0 3.0 3 4 4
215 NA 4.0 NA NA NA
276 3.5 1.5 NA NA NA
289 4.0 NA NA NA NA
426 3.5 1.5 NA NA NA
533 5.0 4.0 NA NA NA
543 4.0 4.0 NA NA NA
585 NA NA NA 2 NA
657 3.5 NA 2 NA NA

A temporary file (tmp) is created here for use later in a figure (see below).

The matrix is then prepared for the PCA by converting the ratings to difference residuals, subtracting both
the user average and movie averages successively.

11

Preparing the matrix for PCA.
y <- sweep(y, 1, rowMeans(y, na.rm = TRUE))
y <- sweep(y, 2, colMeans(y, na.rm = TRUE))

y[is.na(y)] <- 0
y <- sweep(y, 1, rowMeans(y))

The data is zeroed by means of determining the differentials. There is no need for scaling as all descriptors
stem from the same rating scale.

executing the pca.
pca <- prcomp(y, center = F, scale. = F, retx = T)

Visualising the PCA. Plot of standard deviation.

0 200 400 600 800 1000 1200

0
1

2
3

PCA standard deviation

Index

pc
a$

sd
ev

Plot of variance.
var_explained <- cumsum(pca$sdev^2/sum(pca$sdev^2))
plot(var_explained, main = "PCA variance by PC index")

12

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PCA variance by PC index

Index

va
r_

ex
pl

ai
ne

d

Certainly most of the variation is explained by 500 principal components. It is impractical for me to apply
all of these using the method I implement below. I will begin by applying a few PC’s at a time.

Some more data visualisation. Dealing with just the principle components themselves (i.e. pca$rotation
output), and then looking at the plot of PC1 vs PC2 to get a feel for the sort of relationships that exist
between movies. (This is where the tmp file is used)

13

From Dusk Till Dawn (1996)

Natural Born Killers (1994)

Beauty and the Beast (1991)

E.T. the Extra−Terrestrial (1982)

Alien³ (1992)

Mars Attacks! (1996) Starship Troopers (1997)

Titanic (1997)

Big Lebowski, The (1998)
Fear and Loathing in Las Vegas (1998)

Armageddon (1998)

Fight Club (1999)
−0.10

−0.05

0.00

0.05

0.10

−0.05 0.00 0.05 0.10
PC1

P
C

2

Here is a list of the bottom 10 movies with lowest PC1 values.

name PC1
2001: A Space Odyssey (1968) -0.0876942
Fargo (1996) -0.0790072
Taxi Driver (1976) -0.0788093
Rushmore (1998) -0.0783005
Clockwork Orange, A (1971) -0.0770914
Royal Tenenbaums, The (2001) -0.0765708
Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1964) -0.0754940
Being John Malkovich (1999) -0.0754605
Big Lebowski, The (1998) -0.0691255
Pulp Fiction (1994) -0.0667902

Here is a list of the top 10 movies with highest PC1 values.

name PC1
Armageddon (1998) 0.1030721
Independence Day (a.k.a. ID4) (1996) 0.0961242
Twister (1996) 0.0800476
Top Gun (1986) 0.0750382
Ghost (1990) 0.0737872
Batman & Robin (1997) 0.0725400
Patriot, The (2000) 0.0713729
Lethal Weapon 4 (1998) 0.0704403
Pretty Woman (1990) 0.0696758

14

name PC1
Patch Adams (1998) 0.0673817

SETTING UP THE EDX_CV DATA FRAME TO BE COMPATIBLE WITH PCA.

Now I need the actual ratings from the edx_cv data set in a 68052 by 9728 matrix. The reason these are the
necessary dimensions is because this is are the numbers of unique users, and movies (respectively) in the
testing (“edx_cv”) dataframe.
val_ratings.m <- edx_cv %>%

select(userId, movieId, rating) %>%
spread(movieId, rating) %>%
as.matrix()

Taking the first column values as row names, then deleting it. Column names are taken as the movie titles.
rownames(val_ratings.m) <- val_ratings.m[,1]
val_ratings.m <- val_ratings.m[,-1]
colnames(val_ratings.m) <- with(movie_titles, title[match(colnames(val_ratings.m), movieId)])
val_ratings.m[1:10, 5:7]

Father of the Bride Part II (1995) Heat (1995) Sabrina (1995)
1 NA NA NA
2 NA NA NA
3 NA NA NA
4 NA NA NA
5 NA NA NA
6 NA NA NA
7 NA NA NA
8 NA NA NA
9 NA NA NA
10 NA NA 3

You will see from the small snippet above, that this is a sparse matrix. The first actual rating is in row 10,
columm 7.

For the matrix operations that I will apply later, it is important that the dimensions of my PCA data matches
the edx_cv matrix above (i.e. dimensions 68052 by 9728).

I need to take the x and rotation matrices from pca and expand them to match the dimensions of the edx_cv
matrix. That is unique userId (68052) by unique movieId (9728). These expanded matrices will be sparse
matrices.

To start with, I need the lists of all userId’s and movieId’s in the edx_cv dataframe to use as a reference.

First userId.
unique_usr_val <- as.matrix(unique(edx_cv$userId))
colnames(unique_usr_val) <- c("userId")

Now MovieId.
unique_mov_val <- as.matrix(unique(edx_cv$movieId))
colnames(unique_mov_val) <- c("movieId")

Creating the “User effect” sparse matrix. All NA’s of this sparse matrix are converted to 0.
pca_x <- pca$x %>% as.data.frame() %>%

tibble::rownames_to_column(., "userId") %>%

15

merge(unique_usr_val, ., by = "userId", all = TRUE)
pca_x <- as.matrix(pca_x[,-1])
pca_x[is.na(pca_x)] <- 0

Creating the “Principal component” sparse matrix. All NA’s of this sparse matrix are converted to 0.
pca_rotation <- pca$rotation %>% as.data.frame() %>%

tibble::rownames_to_column(., "movieId") %>%
merge(unique_mov_val, ., by = "movieId", all = TRUE)

pca_rotation <- as.matrix(pca_rotation[,-1])
pca_rotation[is.na(pca_rotation)] <- 0

Now to build a large matrix of predictions from where I left off after “Reg mov and usr with 4.5”. This will
have the dimensions that are consistent with unique userId/movidId values.
predictions <- edx_cv %>%

left_join(b_i, by = "movieId") %>%
left_join(b_u, by = "userId") %>%
mutate(pred = mu + b_i + b_u)

Below, y3 is the matrix of predictions made above, before I apply any of the PCA corrections. The dimensions
of this matrix match the edx_cv matrix (68052 by 9728).
y3 <- predictions %>%

select(userId, movieId, pred) %>%
spread(movieId, pred) %>%
as.matrix()

rownames(y3) <- y3[,1]
y3 <- y3[,-1]

To apply the PCA outcomes to my prediction algorithm, it will take the form of; pred = mu + b_i + b_u +
p1q1 + p2q2 + pnqn,

where p and q are vectors containing the a single column of user effect (pcax)andprinciplecomponent(pcarotation)
from the PCA, respectively. Each pq pair represents a successive principle component element to be applied
to the prediction algorithm. p1q1 is equivalent to the effect ofPC1, and so on. Multiplying the vectors
together will generate a matrix of dimensions 68052 by 9728. This can be added to the previous prediction
calculations to effect the changes introduced by each successive principle component.

Performing the new prediction using PC1. Remembering y3 is the matrix of predictions from the last step of
regularisation and application of lambda correction for both user and movie effect (i.e. “Reg mov & usr with
4.75 l”).

Defining my p and q vectors Vectors p are called user effects. Vectors q are called prinipal components.
NOTE. . . both p1 and q1 are converted to matrices, with p1 being 68052 X 1, and q1 1 X 9728
p1 <- as.matrix(pca_x[,1])
q1 <- matrix(pca_rotation[,1], nrow = 1, byrow = T)
p2 <- as.matrix(pca_x[,2])
q2 <- matrix(pca_rotation[,2], nrow = 1, byrow = T)
p3 <- as.matrix(pca_x[,3])
q3 <- matrix(pca_rotation[,3], nrow = 1, byrow = T)
p4 <- as.matrix(pca_x[,4])
q4 <- matrix(pca_rotation[,4], nrow = 1, byrow = T)
p5 <- as.matrix(pca_x[,5])
q5 <- matrix(pca_rotation[,5], nrow = 1, byrow = T)
p6 <- as.matrix(pca_x[,6])
q6 <- matrix(pca_rotation[,6], nrow = 1, byrow = T)

16

p7 <- as.matrix(pca_x[,7])
q7 <- matrix(pca_rotation[,7], nrow = 1, byrow = T)
p8 <- as.matrix(pca_x[,8])
q8 <- matrix(pca_rotation[,8], nrow = 1, byrow = T)
p9 <- as.matrix(pca_x[,9])
q9 <- matrix(pca_rotation[,9], nrow = 1, byrow = T)
p10 <- as.matrix(pca_x[,10])
q10 <- matrix(pca_rotation[,10], nrow = 1, byrow = T)

It is important to convert these vectors into actual matrices of dimentions ‘x X 1’ and ‘1 X y’ so they can be
multiplied together as part of the prediction algorithm. This will generates matrices of dimensions x by y.

Prediction algorithm #9: Reg plus PC1 to PC10

Adding the first 10 principle components to the previous prediction model (i.e. “REG MOV & USR WITH
4.5 L”).
new_pred_10 <- y3 + (p1%*%q1) + (p2%*%q2) + (p3%*%q3) + (p4%*%q4) + (p5%*%q5) + (p6%*%q6) +

(p7%*%q7) + (p8%*%q8) + (p9%*%q9) + (p10%*%q10)

rmse_PC1_to_10 <- sqrt(mean((val_ratings.m - new_pred_10)^2, na.rm = TRUE))

rmse_results <- bind_rows(rmse_results,
data_frame(method = "Reg plus PC1 to PC10",

RMSE = rmse_PC1_to_10))

I can likely push this further throught the addition of more PC’s, but the computation requirements necessary
are beginning to outweight the gains in RMSE values. I will stop here at PC’s 1 to 10, and a final RMSE
value of 0.861.

17

Results
Above I have run through the methodology that resulted in my final prediction algorithm for the 10M
movielens database. I will now present the outcomes of each stage of my prediction algorithm and discuss
each stage in some detail.

“JUST THE AVERAGE” - RMSE value = 1.061

Obviously this is not a great value. Being on average more than 1 unit away from the true rating in my
prediction system when the whole raring system only ranges from 0.5 to 5, is not an impressive prediction
system. Clearly some improvement on just taking the average rating is possible. This should just be considered
a benchmark of sorts.

“MOVIE EFFECT MODEL” - RMSE value = 0.944

Now we have some improvement. Dropping just under an RMSE value of 1 but taking into account how the
aveage ratings for each separate movie differ from the overall average. Obviously some movies are on average
rated higher than others. Some lower too. Applying these residuals to the average improves the model RMSE
by just over 11% to 0.944.

“USER AND MOVIE EFFECT MODEL” - RMSE value = 0.886

I did not look at the influence of the user effect alone, but rather jumped to the combination of movie effect
plus the user effect together. Taking these two together made a significant improvement of the model RMSE
to 0.885. Now this is looking decent.

“REGULARISED MOVIE EFFECT” - RMSE value = 0.944

Taking a step backward an only looking at the movie effect alone, but after it has been regularised to take in
to account cases where residuals are inflated by low n values. In the first case a somewhat random value
of lambda (i.e. 3) is used and a negligible improvement in the model RMSE is attained. From 0.94391 for
unregularised residuals, to 0.94385 for regularised residuals (lambda = 3).

“REGULARISED USER EFFECT” - RMSE value = 0.979

For what ever reason, this model performed worse than any other model yet, excluding the base level “Just
the average” model. This may be explained by the randomly chosen lambda value of 3. Some optimisation
may be required to make regularisation of the user effect useful.

“REG MOVIE AND USER EFFECT” - RMSE = 1.26

Combining the regularised movie and regularised user effects had a dramitically negative effect on the RMSE
value of the model. It will be interesting to see if the lambda parameter could be optimised to return an even
better RMSE.

“REG MOV & USR WITH 4.5 L” - RMSE = 0.865

Cross validation of the lambda value against the edx_cv subset returned a value of 4.5 which yielded a
model RMSE of 0.865 which is quite impressive. This is a remarkable turn around as obviously the original
assignment of lambda to 3 was non-ideal and refining this parameter had a tremendous effect on the model’s
effectiveness.

“REG PLUS PC1 to PC10” - RMSE = 0.861

Adding the first 10 PC’s dropped the model RMSE down to 0.861 which is quite good for this recomendation
system. To give some context to this, the Netflix prize that offered $1M to a successful team, if that team to
drop the benchmark RMSE of the time by 10% to 0.8572.

18

Below is a table outlining all the prediction models and their coresponding RMSE values when evaluated
against edx_cv.

method RMSE
Just the average 1.0611350
Movie Effect Model 0.9441568
User and Movie Effect Model 0.8859483
Regularised movie effect 0.9441230
Regularised user effect 0.9791932
Reg movie and user effect 0.8843992
Reg mov & usr with 4.5 l 0.8654673
Reg plus PC1 to PC10 0.8605152

FINAL Prediction Algorithm

As a final model I am taking that last algorithm (Reg plus PC1 to PC10) which is a culmination of all
preceding algorithms. A final assessment for the algorithm is to test it against the validation testing dataset
that has been kept aside during the course of this work.

However as the last PCA section is based on matrix operations that must match dimensions perfectly, some
modifications are necessary to test it against the validation dataset.

First the validation dataset has to be put into matrix form to make it compatible with the PCA work.
validation.m <- validation %>%

select(userId, movieId, rating) %>%
spread(movieId, rating) %>%
as.matrix()

rownames(validation.m) <- validation.m[,1]
validation.m <- validation.m[,-1]
colnames(validation.m) <- with(movie_titles, title[match(colnames(validation.m), movieId)])

The dimensions of this validation matrix are 68534 by 9809. This is larger than the edx_cv matrix used
previously which was 68052 by 9728. Hense the need for modification here.

Next unique lists of users and movies must be determined for validation dataset. First userId.
unique_usr_val.f <- as.matrix(unique(validation$userId))
colnames(unique_usr_val.f) <- c("userId")

Now MovieId.
unique_mov_val.f <- as.matrix(unique(validation$movieId))
colnames(unique_mov_val.f) <- c("movieId")

Creating the final model “User effect” sparse matrix. All NA’s of this sparse matrix are converted to 0.
pca_x.f <- pca$x %>% as.data.frame() %>%

tibble::rownames_to_column(., "userId") %>%
merge(unique_usr_val.f, ., by = "userId", all = TRUE)

pca_x.f <- as.matrix(pca_x.f[,-1])
pca_x.f[is.na(pca_x.f)] <- 0

Creating the final model “Principal component” sparse matrix. All NA’s of this sparse matrix are converted
to 0.
pca_rotation.f <- pca$rotation %>% as.data.frame() %>%

tibble::rownames_to_column(., "movieId") %>%

19

merge(unique_mov_val.f, ., by = "movieId", all = TRUE)
pca_rotation.f <- as.matrix(pca_rotation.f[,-1])
pca_rotation.f[is.na(pca_rotation.f)] <- 0

Now to rebuild a large matrix of predictions based this time on the validation matrix, from where I left off
after “Reg mov and usr with 4.5”. This will have the dimensions that are consistent with validation dataset
unique userId/movidId values.
predictions.f <- validation %>%

left_join(b_i, by = "movieId") %>%
left_join(b_u, by = "userId") %>%
mutate(pred = mu + b_i + b_u)

Below, y3.f is the matrix of new predictions made above, before I apply any of the PCA corrections. The
dimensions of this matrix match the validation matrix (68534 by 9809).
y3.f <- predictions.f %>%

select(userId, movieId, pred) %>%
spread(movieId, pred) %>%
as.matrix()

rownames(y3.f) <- y3.f[,1]
y3.f <- y3.f[,-1]

I have to define the p and q vectors again as their lengths are linked to the dimensions of the original edx_cv
unique users, and unique movies respectively. The dimantions of the validation dataset equivalents are
different.
p1 <- as.matrix(pca_x.f[,1])
q1 <- matrix(pca_rotation.f[,1], nrow = 1, byrow = T)
p2 <- as.matrix(pca_x.f[,2])
q2 <- matrix(pca_rotation.f[,2], nrow = 1, byrow = T)
p3 <- as.matrix(pca_x.f[,3])
q3 <- matrix(pca_rotation.f[,3], nrow = 1, byrow = T)
p4 <- as.matrix(pca_x.f[,4])
q4 <- matrix(pca_rotation.f[,4], nrow = 1, byrow = T)
p5 <- as.matrix(pca_x.f[,5])
q5 <- matrix(pca_rotation.f[,5], nrow = 1, byrow = T)
p6 <- as.matrix(pca_x.f[,6])
q6 <- matrix(pca_rotation.f[,6], nrow = 1, byrow = T)
p7 <- as.matrix(pca_x.f[,7])
q7 <- matrix(pca_rotation.f[,7], nrow = 1, byrow = T)
p8 <- as.matrix(pca_x.f[,8])
q8 <- matrix(pca_rotation.f[,8], nrow = 1, byrow = T)
p9 <- as.matrix(pca_x.f[,9])
q9 <- matrix(pca_rotation.f[,9], nrow = 1, byrow = T)
p10 <- as.matrix(pca_x.f[,10])
q10 <- matrix(pca_rotation.f[,10], nrow = 1, byrow = T)

Final Prediction algorithm

Adding the first 10 principle components to the previous prediction model (i.e. “REG MOV & USR WITH
4.5 L”).
new_pred_10.f <- y3.f + (p1%*%q1) + (p2%*%q2) + (p3%*%q3) + (p4%*%q4) + (p5%*%q5) + (p6%*%q6) +

(p7%*%q7) + (p8%*%q8) + (p9%*%q9) + (p10%*%q10)

20

rmse_final <- sqrt(mean((validation.m - new_pred_10.f)^2, na.rm = TRUE))
print("Final Algorithm RMSE")

[1] "Final Algorithm RMSE"
rmse_final

[1] 0.8602696

The RMSE value for the final prediction algorithm is 0.860

Conclusion
This body of work produces a series of recommender systems that serve to predict the ratings of a dataset
of user/movie ratings. Starting with a readily available 10M MovieLens dataset, it was broken up into a
training dataset (“edx”) and a testing dataset (“validation”) consisting of 90% and 10% of the original data
respectively. Models were trained against the training dataset and had the RMSE’s of their predictions
determined by comparing them to the testing dataset.

The development of the prediction algorithm picked up from instructions given in section 6 of the HarvardX
Machine Learning module, and applied them to this larger MovieLens dataset. RMSE values consistently
dropped in common to the section 6 worked example. It is worth noting that a different optimal lambda
value was found in this work, and the RMSE value returned by the application of this lambda value already
gave an impressive 0.8648. It should also be noted that cross validation of the lambda parameter against the
sub-divided training dataset was new to this investigation.

Performing the PCA also followed base instructions given in section 6 of the HarvardX course. However,
application of the results of this PCA analysis is new to this work. Careful construction of a series of matrices
that enabled the base prediction equation (pred = mu + b_i + b_u + p1q1 + p2q2 + pnqn). The
resulting application of the top 10 principle components gave incremental improvements to the model RMSE,
culminating in an impresive final result for the top 10 PC’s and an RMSE of 0.8579. There is no doubt that
application of more PC’s will drop the RMSE further, but to a deminishing extent, and due to the high
computational requirement, the decision has been made to stop at 10. Still even with the best 10 principle
components, the prediction algorithm performs well.

21

	Movielens Project
	Introduction
	Methods/Analysis
	Preparation of cross validation subdivision of edx training dataset
	Development of Prediction algorithm
	Defining the RMSE algorithm used assess usefulness of prediction algorithms.
	Prediction algorithm #1: Just the average.
	Prediction algorithm #2: Movie effect model
	Prediction algorithm #3: Movie and user effect model
	Regularisation
	Principle component analysis

	Results
	``JUST THE AVERAGE'' - RMSE value = 1.061
	``MOVIE EFFECT MODEL'' - RMSE value = 0.944
	``USER AND MOVIE EFFECT MODEL'' - RMSE value = 0.886
	``REGULARISED MOVIE EFFECT'' - RMSE value = 0.944
	``REGULARISED USER EFFECT'' - RMSE value = 0.979
	``REG MOVIE AND USER EFFECT'' - RMSE = 1.26
	``REG MOV & USR WITH 4.5 L'' - RMSE = 0.865
	``REG PLUS PC1 to PC10'' - RMSE = 0.861
	FINAL Prediction Algorithm

	Conclusion

